MVR COLLEGE OF ENGINEERING AND TECHNOLOGY

COMPUTER PROGRAMMING
UNIT VI

FILE HANDLING

1. Input and output- concept of a file,
2. text files
3. binary files,
4. Formatted I/O,
C Programming Files I/O

In C programming, file is a place on disk where a group of related data is stored.

· Why files are needed?

When the program is terminated, the entire data is lost in C programming. If you want to keep large volume of data, it is time consuming to enter the entire data. But, if file is created, these information can be accessed using few commands.

There are large numbers of functions to handle file I/O in C language. In this tutorial, you will learn to handle standard I/O(High level file I/O functions) in C.

High level file I/O functions can be categorized as:

· Text file

· Binary file
File Operations
· Creating a new file

· Opening an existing file

· Reading from and writing information to a file

· Closing a file

Working with file

While working with file, you need to declare a pointer of type file. This declaration is needed for communication between file and program.

FILE *ptr;
Opening a file

Opening a file is performed using library function fopen(). The syntax for opening a file in standard I/O is:

ptr=fopen("fileopen","mode")

For Example:

fopen("E:\\cprogram\program.txt","w");

/* --- */

 E:\\cprogram\program.txt is the location to create file.

 "w" represents the mode for writing.

/* --- */

Here, the program.txt file is opened for writing mode.

Opening Modes in Standard I/O
	File Mode
	Meaning of Mode
	During Inexistence of file

	r
	Open for reading.
	If the file does not exist, fopen() returns NULL.

	w
	Open for writing.
	If the file exists, its contents are overwritten. If the file does not exist, it will be created.

	a
	Open for append. i.e, Data is added to end of file.
	If the file does not exists, it will be created.

	r+
	Open for both reading and writing.
	If the file does not exist, fopen() returns NULL.

	w+
	Open for both reading and writing.
	If the file exists, its contents are overwritten. If the file does not exist, it will be created.

	a+
	Open for both reading and appending.
	If the file does not exists, it will be created.

· Closing a File

The file should be closed after reading/writing of a file. Closing a file is performed using library function fclose().

fclose(ptr); //ptr is the file pointer associated with file to be closed.

The Functions fprintf() and fscanf() functions.

The functions fprintf() and fscanf() are the file version of printf() and fscanf(). The only difference while using fprintf() and fscanf() is that, the first argument is a pointer to the structure FILE

Writing to a file

#include <stdio.h>

int main()

{

 int n;

 FILE *fptr;

 fptr=fopen("C:\\program.txt","w");

 if(fptr==NULL){

 printf("Error!");

 exit(1);

 }

 printf("Enter n: ");

 scanf("%d",&n);

 fprintf(fptr,"%d",n);

 fclose(fptr);

 return 0;

}

This program takes the number from user and stores in file. After you compile and run this program, you can see a text file program.txt created in C drive of your computer. When you open that file, you can see the integer you entered.

Similarly, fscanf() can be used to read data from file.

Reading from file

#include <stdio.h>

int main()

{

 int n;

 FILE *fptr;

 if ((fptr=fopen("C:\\program.txt","r"))==NULL){

 printf("Error! opening file");

 exit(1); /* Program exits if file pointer returns NULL. */

 }

 fscanf(fptr,"%d",&n);

 printf("Value of n=%d",n);

 fclose(fptr);

 return 0;

}

If you have run program above to write in file successfully, you can get the integer back entered in that program using this program.

Other functions like fgetchar(), fputc() etc. can be used in similar way.

Binary Files

Depending upon the way file is opened for processing, a file is classified into text file and binary file.

If a large amount of numerical data it to be stored, text mode will be insufficient. In such case binary file is used.

Working of binary files is similar to text files with few differences in opening modes, reading from file and writing to file.

Opening modes of binary files
Opening modes of binary files are rb, rb+, wb, wb+,ab and ab+. The only difference between opening modes of text and binary files is that, b is appended to indicate that, it is binary file.

Reading and writing of a binary file.
Functions fread() and fwrite() are used for reading from and writing to a file on the disk respectively in case of binary files.

Function fwrite() takes four arguments, address of data to be written in disk, size of data to be written in disk, number of such type of data and pointer to the file where you want to write.

fwrite(address_data,size_data,numbers_data,pointer_to_file);

Function fread() also take 4 arguments similar to fwrite() function as above.
Ascii Files (plain text)

There are functions to read single characters at a time (getc() and putc()), there are functions to read and write formatted output (fscanf() and fprintf()), and there are functions to read and write single lines at a time (fgets() and fputs()).

Here is an example program that outputs a table of temperature values in Fahrenheit and Celsius to an ascii file.

#include <stdio.h>

int main(int argc, char *argv[]) {

 FILE *fp;

 double tmpC[11] = {-10.0, -8.0, -6.0,

 -4.0, -2.0, 0.0, 2.0,

 4.0, 6.0, 8.0, 10.0};

 double tmpF;
int i;

 fp = fopen("outfile.txt", "w");

 if (fp == NULL) {

 printf("sorry can't open outfile.txt\n");

 return 1;

 }

 else {

 // print a table header

 fprintf(fp, "%10s %10s\n", "Celsius", "Fahrenheit");

 for (i=0; i<11; i++) {

 tmpF = ((tmpC[i] * (9.0/5.0)) + 32.0);

 fprintf(fp, "%10.2f %10.2f\n", tmpC[i], tmpF);

 }

 fclose(fp);

 }

 return 0;

}

plg@wildebeest:~/Desktop$ more outfile.txt

 Celsius Fahrenheit

 -10.00 14.00

 -8.00 17.60

 -6.00 21.20

 -4.00 24.80

 -2.00 28.40

 0.00 32.00

 2.00 35.60

 4.00 39.20

 6.00 42.80

 8.00 46.40

 10.00 50.00

A couple of things are worth noting about the code above. On line 13, we check the value of the file pointer fp, and if it is equal to NULL (which means there was an error opening the file), we write a message to the screen and we return 1 (which exits the main() function and thus exits our program). A convention in UNIX is that programs which execute successfully return 0 and non-zero values are returned when there was an error encountered.

On lines 19 and 22 we use the fprintf() function to write to the file. This is just like the printf() function that we have seen before, to write formatted output to standard output. This time we're writing to a file instead.

To illustrate reading from ascii files, here's an example program that will read in the file produced by the previous code example, and do some arithmetic on them.

#include <stdio.h>

int main(int argc, char *argv[]) {

 FILE *fp;

 char buffer[256];

 double tempC, tempF;

 double sumC = 0.0;

 double sumF = 0.0;

 int numread = 0;

 fp = fopen("outfile.txt", "r");

 if (fp == NULL) {

 printf("there was an error opening outfile.txt\n");

 return 1;

 }

 else {

 // read in the header line first

 fgets(buffer, 256, fp);

 while (!feof(fp)) {

 fscanf(fp, "%lf %lf\n", &tempC, &tempF);

 printf("tempC=%.2f, tempF=%.2f\n", tempC, tempF);

 sumC += tempC;

 sumF += tempF;

 numread++;

 }

 fclose(fp);

 printf("%d values read, sumC=%.2f and sumF=%.2f\n", numread, sumC, sumF);

 }

 return 0;

}

tempC=-10.00, tempF=14.00

tempC=-8.00, tempF=17.60

tempC=-6.00, tempF=21.20

tempC=-4.00, tempF=24.80

tempC=-2.00, tempF=28.40

tempC=0.00, tempF=32.00

tempC=2.00, tempF=35.60

tempC=4.00, tempF=39.20

tempC=6.00, tempF=42.80

tempC=8.00, tempF=46.40

tempC=10.00, tempF=50.00

11 values read, sumC=0.00 and sumF=352.00
Some comments about the above code example: on line 19 we use the fgets() function to read in the first line of the file to a character string (buffer) that we declared above. The fgets() function requires as its second argument the maximum number of characters to read. Since we know we don't expect many here, we indicate a maximum of 256. After reading in the first line, we now enter a while loop, using fscanf() to read in each pair of floating-point values. The while loop terminates when !feof(fp) is false. The feof() function returns TRUE if we are at the end of the file, and FALSE otherwise.

Advantages of binary files over ascii files is that they are typically smaller in size, and they can be read from and written to faster (no need to convert between raw bytes and ascii characters). Disadvantages of binary files are that they are not human readable (you can't open in them in a text editor and "look" at them).

The fread() and fwrite() functions are used to read and write binary data (raw bytes) from and to binary files. Here is an example of writing some data to a binary file. We first write a 16 byte header containing the date (4 + 4 + 4 = 12 bytes) and the number of data points (4 bytes). We then write out the data array, 4 bytes per element. In this example the data are integer values.

#include <stdio.h>

int main(int argc, char *argv[]) {

 FILE *fp;

 int year = 2012;

 int month = 8;

 int day = 26;

 int mydata[5] = {2, 4, 6, 8, 10};

 fp = fopen("data.bin", "w");

 if (fp == NULL) {

 printf("error opening data.bin\n");

 return 1;

 }

 else {

 // write out the header

 int bytesout;

 bytesout = fwrite(&year, sizeof(year), 1, fp);

 bytesout = fwrite(&month, sizeof(month), 1, fp);

 bytesout = fwrite(&day, sizeof(day), 1, fp);

 // write the data

 bytesout = fwrite(mydata, sizeof(int), 5, fp);

 fclose(fp);

 }

 return 0;

}

Here is an example program to read from the binary data file:

#include <stdio.h>

int main(int argc, char *argv[]) {

 FILE *fp;

 int bytesread;

 int yy, mm, dd;

 int thedata[5];

 fp = fopen("data.bin", "r");

 if (fp == NULL) {

 printf("error opening data.bin\n");

 return 1;

 }

 else {

 // read the header

 bytesread = fread(&yy, sizeof(int), 1, fp);

 bytesread = fread(&mm, sizeof(int), 1, fp);

 bytesread = fread(&dd, sizeof(int), 1, fp);

 printf("year=%d, month=%d, day=%d\n", yy, mm, dd);

 // read the data

 bytesread = fread(thedata, sizeof(int), 5, fp);

 printf("data = [%d,%d,%d,%d,%d]\n",

 thedata[0], thedata[1],thedata[2],thedata[3],thedata[4]);

 fclose(fp);

 }

 return 0;

}

year=2012, month=8, day=26

data = [2,4,6,8,10]

The bottom line is, as long as you know what the binary format is (that is, how many bytes represent each value) then you can read and write them in "raw" binary using fread() and fwrite().
Write a C program to read name and marks of n number of students from user and store them in a file

#include <stdio.h>

int main(){

 char name[50];

 int marks,i,n;

 printf("Enter number of students: ");

 scanf("%d",&n);

 FILE *fptr;

 fptr=(fopen("C:\\student.txt","w"));

 if(fptr==NULL){

 printf("Error!");

 exit(1);

 }

 for(i=0;i<n;++i)

 {

 printf("For student%d\nEnter name: ",i+1);

 scanf("%s",name);

 printf("Enter marks: ");

 scanf("%d",&marks);

 fprintf(fptr,"\nName: %s \nMarks=%d \n",name,marks);

 }

 fclose(fptr);

 return 0;

}
Write a C program to read name and marks of n number of students from user and store them in a file. If the file previously exits, add the information of n students.

#include <stdio.h>

int main()
{

 char name[50];

 int marks,i,n;

 printf("Enter number of students: ");

 scanf("%d",&n);

 FILE *fptr;

 fptr=(fopen("C:\\student.txt","a"));

 if(fptr==NULL){

 printf("Error!");

 exit(1);

 }

 for(i=0;i<n;++i)

 {

 printf("For student%d\nEnter name: ",i+1);

 scanf("%s",name);

 printf("Enter marks: ");

 scanf("%d",&marks);

 fprintf(fptr,"\nName: %s \nMarks=%d \n",name,marks);

 }

 fclose(fptr);

 return 0;

}
Write a C program to write all the members of an array of strcures to a file using fwrite(). Read the array from the file and display on the screen.

#include <stdio.h>

struct s

{

char name[50];

int height;

};

int main(){

 struct s a[5],b[5];

 FILE *fptr;

 int i;

 fptr=fopen("file.txt","wb");

 for(i=0;i<5;++i)

 {

 fflush(stdin);

 printf("Enter name: ");

 gets(a[i].name);

 printf("Enter height: ");

 scanf("%d",&a[i].height);

 }

 fwrite(a,sizeof(a),1,fptr);

 fclose(fptr);

 fptr=fopen("file.txt","rb");

 fread(b,sizeof(b),1,fptr);

 for(i=0;i<5;++i)

 {

 printf("Name: %s\nHeight: %d",b[i].name,b[i].height);

 }

 fclose(fptr);

}
C Programming Enumeration

An enumeration is a user-defined data type consists of integral constants and each integral constant is give a name. Keyword enum is used to defined enumerated data type.

enum type_name{ value1, value2,...,valueN };
Here, type_name is the name of enumerated data type or tag. And value1, value2,....,valueN are values of type type_name.

By default, value1 will be equal to 0, value2 will be 1 and so on but, the programmer can change the default value.

// Changing the default value of enum elements

enum suit{

 club=0;

 diamonds=10;

 hearts=20;

 spades=3;

};

Declaration of enumerated variable

Above code defines the type of the data but, no any variable is created. Variable of type enum can be created as:

enum boolean{

 false;

 true;

};

enum boolean check;

Here, a variable check is declared which is of type enum boolean.

Example of enumerated type

#include <stdio.h>

enum week{ sunday, monday, tuesday, wednesday, thursday, friday, saturday};

int main(){

 enum week today;

 today=wednesday;

 printf("%d day",today+1);

 return 0;

 }

Output

4 day

You can write any program in C language without the help of enumerations but, enumerations helps in writing clear codes and simplify programming.
125

